v

您的位置:VeryCD图书计算机与网络

图书资源事务区


《数据科学实战》扫描版[PDF]

  • 状态: 精华资源
  • 摘要:
    图书分类网络
    出版社人民邮电出版社
    发行时间2015年03月01日
    语言简体中文
  • 时间: 2016/07/27 16:03:36 发布 | 2016/07/28 18:34:00 更新
  • 分类: 图书  计算机与网络 

ccyyf

精华资源: 368

全部资源: 374

相关: 分享到新浪微博   转播到腾讯微博   分享到开心网   分享到人人   分享到QQ空间   订阅本资源RSS更新   美味书签  subtitle
该内容尚未提供权利证明,无法提供下载。
中文名数据科学实战
图书分类网络
资源格式PDF
版本扫描版
出版社人民邮电出版社
书号9787115383495
发行时间2015年03月01日
地区大陆
语言简体中文
简介

IPB Image

内容介绍:

《数据科学实战》脱胎于哥伦比亚大学“数据科学导论”课程的教学讲义,它界定了数据科学的研究范畴,是一本注重人文精神,多角度、全方位、深入介绍数据科学的实用指南,堪称大数据时代的实战宝典。本书旨在让读者能够举一反三地解决重要问题,内容包括:数据科学及工作流程、统计模型与机器学习算法、信息提取与统计变量创建、数据可视化与社交网络、预测模型与因果分析、数据预处理与工程方法。另外,本书还将带领读者展望数据科学未来的发展。

作者简介:

Rachel Schutt,美国新闻集团旗下数据科学部门高级副总裁、哥伦比亚大学统计系兼职教授、约翰逊实验室高级研究科学家,同时也是哥伦比亚大学数据科学及工程研究所教育委员会的发起人之一。她曾在谷歌研究院工作数年,负责设计算法原型并通过建模理解用户行为。

Cathy O'Neil,约翰逊实验室高级数据科学家、哈佛大学数学博士、麻省理工学院数学系博士后、巴纳德学院教授,曾发表过大量算术代数几何方面的论文。他曾在全球投资管理公司D.E. Shaw担任对冲基金金融师,后加入专门评估银行和对冲基金风险的软件公司RiskMetrics,个人博客:mathbabe.org。

备注说明:

书籍来源于网络,转载于网易博客,更多书籍可到百度搜索 ntccy2009博客 查找资源自行下载 请支持正版!

内容截图:

IPB Image



目录

作者介绍 XII
关于封面图 XIII
前言 XIV
第1章 简介:什么是数据科学
1.1 大数据和数据科学的喧嚣
1.2 冲出迷雾
1.3 为什么是现在
1.4 数据科学的现状和历史
1.5 数据科学的知识结构
1.6 思维实验:元定义
1.7 什么是数据科学家
1.7.1 学术界对数据科学家的定义
1.7.2 工业界对数据科学家的定义
第2章 统计推断、探索性数据分析和数据科学工作流程
2.1 大数据时代的统计学思考
2.1.1 统计推断
2.1.2 总体和样本
2.1.3 大数据的总体和样本
2.1.4 大数据意味着大胆的假设
2.1.5 建模
2.2 探索性数据分析
2.2.1 探索性数据分析的哲学
2.2.2 练习:探索性数据分析
2.3 数据科学的工作流程
2.4 思维实验:如何模拟混沌
2.5 案例学习:RealDirect
2.5.1 RealDirect是如何赚钱的
2.5.2 练一练:RealDirect公司的数据策略
第3章 算法
3.1 机器学习算法
3.2 三大基本算法
3.2.1 线性回归模型
3.2.2 k 近邻模型(k-NN)
3.2.3 k 均值算法
3.3 练习:机器学习算法基础
3.4 总结
3.5 思维实验:关于统计学家的自动化
第4章 垃圾邮件过滤器、朴素贝叶斯与数据清理
4.1 思维实验:从实例中学习
4.1.1 线性回归为何不适用
4.1.2 k 近邻效果如何
4.2 朴素贝叶斯模型
4.2.1 贝叶斯法则
4.2.2 个别单词的过滤器
4.2.3 直通朴素贝叶斯
4.3 拉普拉斯平滑法
4.4 对比朴素贝叶斯和k 近邻
4.5 Bash代码示例
4.6 网页抓取:API和其他工具
4.7 Jake的练习题:文章分类问题中的朴素贝叶斯模型
第5章 逻辑回归
5.1 思维实验
5.2 分类器
5.2.1 运行时间
5.2.2 你自己
5.2.3 模型的可解释性
5.2.4 可扩展性
5.3 逻辑回归:一个来自M6D 的真实案例研究
5.3.1 点击模型
5.3.2 模型背后
5.3.3 α和β 的参数估计
5.3.4 牛顿法
5.3.5 随机梯度下降法
5.3.6 操练
5.3.7 模型评价
5.4 练习题
第6章 时间戳数据与金融建模
6.1 Kyle Teague与GetGlue公司
6.2 时间戳
6.2.1 探索性数据分析(EDA)
6.2.2 指标和新变量
6.2.3 下一步怎么做
6.3 轮到Cathy O'Neill了
6.4 思维实验
6.5 金融建模
6.5.1 样本期内外以及因果关系
6.5.2 金融数据处理
6.5.3 对数收益率
6.5.4 实例:标准普尔指数
6.5.5 如何衡量波动率
6.5.6 指数平滑法
6.5.7 金融模型的反馈
6.5.8 聊聊回归模型
6.5.9 先验信息量
6.5.10 一个小例子
6.6 练习:GetGlue提供的时间戳数据
第7章 从数据到结论
7.1 William Cukierski
7.1.1 背景介绍:数据科学竞赛
7.1.2 背景介绍:众包模式
7.2 Kaggle模式
7.2.1 Kaggle的参赛者
7.2.2 Kaggle的客户
7.3 思维实验:关于作业自动评分系统
7.4 特征选择
7.4.1 例子:留住用户
7.4.2 过滤型
7.4.3 包装型
7.4.4 决策树与嵌入型变量选择
7.4.5 熵
7.4.6 决策树算法
7.4.7 如何在决策树模型中处理连续性变量
7.4.8 随机森林
7.4.9 用户黏性:模型的预测能力与可解释性
7.5 David Huffaker:谷歌社会学研究的新方法
7.5.1 从描述性统计到预测模型
7.5.2 谷歌的社交研究
7.5.3 隐私保护
7.5.4 思维实验:如何消除用户的顾虑
第8章 构建面向大量用户的推荐引擎
8.1 一个真实的推荐引擎
8.1.1 最近邻算法回顾
8.1.2 最近邻模型的已知问题
8.1.3 超越近邻模型:基于机器学习的分类模型
8.1.4 高维度问题
8.1.5 奇异值分解(SVD)
8.1.6 关于SVD的重要特性
8.1.7 主成分分析(PCA)
8.1.8 交替最小二乘法
8.1.9 固定矩阵V,更新矩阵U
8.1.10 关于这些算法的一点思考
8.2 思维实验:如何过滤模型中的泡沫
8.3 练习:搭建自己的推荐系统
第9章 数据可视化与欺诈侦测
9.1 数据可视化的历史
9.1.1 Gabriel Tarde
9.1.2 Mark 的思维实验
9.2 到底什么是数据科学
9.2.1 Processing
9.2.2 Franco Moretti
9.3 一个数据可视化的方案实例
9.4 Mark 的数据可视化项目
9.4.1 《纽约时报》大厅里的可视化:Moveable Type
9.4.2 屏幕上的生命:Cascade可视化项目
9.4.3 Cronkite广场项目
9.4.4 eBay与图书网购
9.4.5 公共剧场里的"莎士比亚机"
9.4.6 这些展览的目的是什么
9.5 数据科学和风险
9.5.1 关于Square公司
9.5.2 支付风险
9.5.3 模型效果的评估问题
9.5.4 建模小贴士
9.6 数据可视化在Square
9.7 Ian的思维实验
9.8 关于数据可视化
第10章 社交网络与数据新闻学
10.1 Morning Analytics与社交网络
10.2 社交网络分析
10.3 关于社交网络分析的相关术语
10.3.1 如何衡量向心性
10.3.2 使用哪种向心性测度
10.4 思维实验
10.5 Morningside Analytics
10.6 从统计学的角度看社交网络分析
10.6.1 网络的表示方法与特征值向心度
10.6.2 随机网络的第一个例子:Erdos-Renyi模型
10.6.3 随机网络的第二个例子:指数随机网络图模型
10.7 数据新闻学
10.7.1 关于数据新闻学的历史回顾
10.7.2 数据新闻报告的写作:来自专家的建议
第11章 因果关系研究
11.1 相关性并不代表因果关系
11.1.1 对因果关系提问
11.1.2 干扰因子:一个关于在线约会网站的例子
11.2 OK Cupid的发现
11.3 黄金准则:随机化临床实验
11.4 A/B测试
11.5 退一步求其次:关于观察性研究
11.5.1 辛普森悖论
11.5.2 鲁宾因果关系模型
11.5.3 因果关系的可视化
11.5.4 定义:因果关系
11.6 三个小建议
第12章 流行病学
12.1 Madigan的学术背景
12.2 思维实验
12.3 统计学在现代
12.4 医学文献与观察性研究
12.5 分层法不解决干扰因子的问题
12.6 就没有更好的办法吗
12.7 研究性实验(OMOP)
12.8 最后的思维实验
第13章 从竞赛中学到的:数据泄漏和模型评价
13.1 Claudia作为数据科学家的知识结构
13.1.1 首席数据科学家的生活
13.1.2 作为一名女数据科学家
13.2 数据挖掘竞赛
13.3 如何成为出色的建模者
13.4 数据泄漏
13.4.1 市场预测
13.4.2 亚马逊案例学习:出手阔绰的顾客
13.4.3 珠宝抽样问题
13.4.4 IBM 客户锁定
13.4.5 乳腺癌检测
13.4.6 预测肺炎
13.5 如何避免数据泄漏
13.6 模型评价
13.6.1 准确度重要吗
13.6.2 概率的重要性,不是非0 即1
13.7 如何选择算法
13.8 最后一个例子
13.9 临别感言
第14章 数据工程:MapReduce、Pregel、Hadoop
14.1 关于David Crawshaw
14.2 思维实验
14.3 MapReduce
14.4 单词频率问题
14.5 其他MapReduce案例
14.6 Pregel
14.7 关于Josh Wills
14.8 思维实验
14.9 给数据科学家的话
14.9.1 数据丰富和数据匮乏
14.9.2 设计模型
14.10 算算Hadoop的经济账
14.10.1 Hadoop简介
14.10.2 Cloudera
14.11 Josh 的工作流程
14.12 如何开始使用Hadoop
第15章 听听学生们怎么说
15.1 重在过程
15.2 不再简单
15.3 援助之手
15.4 殊途同归
15.5 逢山开路,遇水架桥
15.6 作品展示
第16章 下一代数据科学家、自大狂和职业道德
16.1 前面都讲了些什么
16.2 什么是数据科学(再问一次)
16.3 谁是下一代的数据科学家
16.3.1 成为解决问题的人
16.3.2 培养软技能
16.3.3 成为提问者
16.4 做一个有道德感的数据科学家
16.5 对于职业生涯的建议

正在读取……

这里是其它用户补充的资源(我也要补充):

StarAlways 2016/07/29 17:55:09 补充
英文版:

该内容尚未提供权利证明,无法提供下载。
正在加载,请稍等...

点击查看所有53网友评论

 

(?) [公告]留口水、评论相关规则 | [活动]每日签到 轻松领取电驴经验

    小贴士:
  1. 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
  2. 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
  3. 勿催片。请相信驴友们对分享是富有激情的,如果确有更新版本,您一定能搜索到。
  4. 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
  5. 如果您发现自己的评论不见了,请参考以上4条。