v

您的位置:VeryCD图书教育科技

图书资源事务区


《基础数论》(Basic Number Theory)(Andre Weil)扫描版[PDF]

  • 状态: 精华资源
  • 摘要:
    出版社Springer
    发行时间1995年
    语言英文
  • 时间: 2010/06/04 16:17:48 发布 | 2010/06/07 19:18:47 更新
  • 分类: 图书  教育科技 

Jean_Pierre

精华资源: 37

全部资源: 37

相关: 分享到新浪微博   转播到腾讯微博   分享到开心网   分享到人人   分享到QQ空间   订阅本资源RSS更新   美味书签  subtitle
该内容尚未提供权利证明,无法提供下载。
中文名基础数论
原名Basic Number Theory
作者Andre Weil
资源格式PDF
版本扫描版
出版社Springer
书号3540586555
发行时间1995年
地区美国
语言英文
简介

IPB Image

IPB Image

内容简介:

本书是一部学习“类域论”的非常好的教材。学习本书不需要任何数论的基础知识,但需要熟知局部紧Abel环,Pontryagin对偶性以及群上的Haar测度的标准定理。此外,本书不适于代数数论的初学者使用。

Review
"L.R. Shafarevich showed me the first edition in autumn 1967 in Moscow and said that this book will be from now on the book about class field theory. In fact it is by far the most complete treatment of the main theorems of algebraic number theory, including function fields over finite constant fields, that appeared in book form. The theory is presented in a uniform way starting with topological fields and Haar measure on related groups, and it includes not only class field theory but also the theory of simple algebras over local and global fields, which serves as a foundation for class field theory. The spirit of the book is the idea that all this is asic number theory' about which elevates the edifice of the theory of automorphic forms and representations and other theories.
To develop this basic number theory on 312 pages efforts a maximum of concentration on the main features. So, there is absolutely no example which illustrates the rather abstract material and brings it nearer to the heart of the reader.
This is not a book for beginners. This book is written in the spirit of the early forties and just this makes it a valuable source of information for everyone who is working about problems related to number and function fields."
Zentralblatt MATH, 823

内容截图:

IPB Image



目录

Chronological table
Prerequisites and notations
Table of notations
PART I. ELEMENTARY THEORY
Chapter I. Locally compact fields
1. Finite fields
2. The module in a locally compact field
3. Classification of locally compact fields
4. Structure of p-fields
Chapter II. Lattices and duality over local fields
1. Norms
2. Lattices
3. Multiplicative structure of local fields
4. Lattices over R
5. Duality over local fields
Chapter III. Places of A-fields
1. A-fields and their completions
2. Tensor-products of commutative fields
3. Traces and norms
4. Tensor-products of A-fields and local fields
Chapter IV. Adeles
1. Adeles of A-fields
2. The main theorems
3. Ideles
4. Ideles of A-fields
Chapter V. Algebraic number-fields
1. Orders in algebras over Q
2. Lattices over algebraic number-fields
3. Ideals
4. Fundamental sets
Chapter VI. The theorem of Riemann-Roch
Chapter VII. Zeta-functions of A-fields
1. Convergence of Euler products
2. Fourier transforms and standard functions
3. Quasicharacters
4. Quasicharacters of A-fields
5. The functional equation
6. The Dedekind zeta-function
7. L-functions
8. The coefficients of the L-series
Chapter VIII. Traces and norms
1. Traces and norms in local fields
2. Calculation of the different
3. Ramification theory
4. Traces and norms in A-fields
5. Splitting places in separable extensions
6. An application to inseparable extensions
PART II. CLASSFIELD THEORY
Chapter IX. Simple algebras
1. Structure of simple algebras
2. The representations of a simple algebra
3. Factor-sets and the Brauer group
4. Cyclic factor-sets
5. Special cyclic factor-sets
Chapter X. Simple algebras over local fields
1. Orders and lattices
2. Traces and norms
3. Computation of some integrals
Chapter XI. Simple algebras over A-fields
1. Ramification
2. The zeta-function of a simple algebra
3. Norms in simple algebras
4. Simple algebras over algebraic number-fields
Chapter XII. Local classfield theory
1. The formalism of class field theory
2. The Brauer group of a local field
3. The canonical morphism
4. Ramification of abelian extensions
5. The transfer
Chapter XIII. Global classfield theory
1. The canonical pairing
2. An elementary lemma
3. Hasse's "law of reciprocity"
4. Classfield theory for Q
5. The Hilbert symbol
6. The Brauer group of an A-field
7. The Hilbert p-symbol
8. The kernel of the canonical morpnism
9. The main theorems
10. Local behavior of abelian extensions
11. "Classical" classfield theory
12. "Coronidis loco"
Notes to the text
Appendix I. The transfer theorem
Appendix II. W-groups for local fields
Appendix III. Shafarevitch's theorem
Appendix IV. The Herbrand distribution
Index of definitions

正在读取……

这里是其它用户补充的资源(我也要补充):

暂无补充资源
正在加载,请稍等...

点击查看所有24网友评论

 

(?) [公告]留口水、评论相关规则 | [活动]每日签到 轻松领取电驴经验

    小贴士:
  1. 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
  2. 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
  3. 勿催片。请相信驴友们对分享是富有激情的,如果确有更新版本,您一定能搜索到。
  4. 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
  5. 如果您发现自己的评论不见了,请参考以上4条。