《代数数论》(Algebraic Number Theory)扫描版[PDF]

  • 状态: 精华资源
  • 摘要:
  • 时间: 2010/06/04 15:41:57 发布 | 2012/01/02 11:22:24 更新
  • 分类: 图书  教育科技 


精华资源: 37

全部资源: 37

相关: 分享到新浪微博   转播到腾讯微博   分享到开心网   分享到人人   分享到QQ空间   订阅本资源RSS更新   美味书签  subtitle
原名Algebraic Number Theory

IPB Image


"The present book has as its aim to resolve a discrepancy in the textbook literature and ... to provide a comprehensive introduction to algebraic number theory which is largely based on the modern, unifying conception of (one-dimensional) arithmetic algebraic geometry. ... Despite this exacting program, the book remains an introduction to algebraic number theory for the beginner... The author discusses the classical concepts from the viewpoint of Arakelov theory.... The treatment of class field theory is ... particularly rich in illustrating complements, hints for further study, and concrete examples.... The concluding chapter VII on zeta-functions and L-series is another outstanding advantage of the present textbook.... The book is, without any doubt, the most up-to-date, systematic, and theoretically comprehensive textbook on algebraic number field theory available." W. Kleinert in Z.blatt f. Math., 1992 "The author's enthusiasm for this topic is rarely as evide! nt for the reader as in this book. - A good book, a beautiful book." F. Lorenz in Jber. DMV 1995 "The present work is written in a very careful and masterly fashion. It does not show the pains that it must have caused even an expert like Neukirch. It undoubtedly is liable to become a classic; the more so as recent developments have been taken into account which will not be outdated quickly. Not only must it be missing from the library of no number theorist, but it can simply be recommended to every mathematician who wants to get an idea of modern arithmetic." J. Schoissengeier in Montatshefte Mathematik 1994.


IPB Image


Chapter I:Algebraic Integers .
1. The Gaussian Integers
2. Integrality
3. Ideals
4. Lattices
5. Minkowski Theory
6. The Class Number
7. Dirichlet's Unit Theorem
8. Extensions of Dedekind Domains
9. Hilbert's Ramification Theory
10. Cyclotomic Fields
11. Localization
12. Orders
13. One-dimensional Schemes
14. Function Fields
Chapter II:The Theory of Valuations
1. The p-adic Numbers
2. The p-adic Absolute Value
3. Valuations
4. Completions
5. Local Fields
6. Henselian Fields
7. Unramified and Tamely Ramified Extensions
8. Extensions of Valuations
9. Galois Theory of Valuations
10. Higher Ramification Groups
Chapter III:Riemann-Roeh Theory
1. Primes
2. Different and Discriminant
3. Riemann-Roch
4. Metrized o-Modules
5. Grothendieck Groups
6. The Chern Character
7. Grothendieck-Riemann-Roch
8. The Euler-Minkow.ski Characteristic
Chapter IV:Abstract Class Field Theory
1. Infinite Galois Theory
2. Projective and Inductive Limits ..
3. Abstract Galois Theory
4. Abstract Valuation Theory
5. The Reciprocity Map
6. The General Reciprocity Law
7. The Herbrand Quotient
Chapter V:Local Class Field Theory
1. The Local Reciprocity Law
2. The Norm Residue Symbol over Q(p)
3. The Hilbert Symbol
4. Formal Groups
5. Generalized Cyclotomic Theory
6. Higher Ramification Groups
Chapter VI:Global Class Field Theory
1. Idèles and Idèle Classes
2. Idèles in Field Extensions
3. The Herbrand Quotient of the Idèle Class Group
4. The Class Field Axiom
5. The Global Reciprocity Law
6. Global Class Fields
7. The Ideal-Theoretic Version of Class Field Theory
8. The Reciprocity Law of the Power Residues
Chapter VII:Zeta Functions and L-series
1. The Riemann Zeta Function
2. Dirichlet L-series
3. Theta Series
4. The Higher-dimensional Gamma Function
5. The Dedekind Zeta Function
6. Hecke Characters
7. Theta Series of Algebraic Number Fields
8. Hecke L-series
9. Values of Dirichlet L-series at Integer Points
10. Artin L-series
11. The Artin Conductor
12. The Functional Equation of Artin L-series
13. Density Theorems



fdy1045 2010/08/09 13:10:13 补充




(?) [公告]留口水、评论相关规则 | [活动]每日签到 轻松领取电驴经验

  1. 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
  2. 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
  3. 勿催片。请相信驴友们对分享是富有激情的,如果确有更新版本,您一定能搜索到。
  4. 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
  5. 如果您发现自己的评论不见了,请参考以上4条。