v

您的位置:VeryCD图书教育科技

图书资源事务区


《离散几何中的研究问题》(Research Problems in Discrete Geometry )((美)Peter Brass William Moser Janos Pach)扫描版[PDF]

  • 状态: 精华资源
  • 摘要:
    出版社Springer New York
    发行时间2010年
    语言英文
  • 时间: 2010/05/30 09:22:18 发布 | 2010/05/30 09:43:57 更新
  • 分类: 图书  教育科技 

Jean_Pierre

精华资源: 37

全部资源: 37

相关: 分享到新浪微博   转播到腾讯微博   分享到开心网   分享到人人   分享到QQ空间   订阅本资源RSS更新   美味书签  subtitle
该内容尚未提供权利证明,无法提供下载。
中文名离散几何中的研究问题
原名Research Problems in Discrete Geometry
资源格式PDF
版本扫描版
出版社Springer New York
书号1441920161
发行时间2010年
地区美国
语言英文
简介

IPB Image

内容简介:

离散几何有着150余年的丰富历史,提出了甚至高中生都能理解的诸多公开问题。某些问题异常困难,并和数学其他领域的一些深层问题密切相关。然而,许多问题,甚至某些年代久远的问题,都可能被聪明的大学本科生或者高中生运用精妙构思和数学奥林匹克竞赛中的某些技巧所解决。

《离散几何中的研究问题》是由Leo Moser牵头,花费25年著成,书中包括500余个颇具吸引力的公开问题,理解其中许多问题并不需要太多的准备知识。书中的各章很大程度上内容自含,概述了离散几何,介绍了各个问题的历史细节及最重要的相关结果。..

本书可作为参考书,供致力数学研究,热爱美妙数学问题并不遗余力地试图加以解决的那些专业数学家和研究生查阅。

本书的显著特色包括:

500多个公开问题,其中某些问题的历史久远,而某些问题为新近提出且从未出版;
  
每章分为内容自含的各个部分,各部分均附有详实的参考文献;
  
为寻找论文课题的研究生提供众多研究问题;
  
包含离散几何的一个全面综述,突出介绍离散几何研究的前沿问题和发展前景;
  
150多幅图表;
  
Paul Erdos生前为本书早期版本所写的序言。

内容截图:

IPB Image



目录

0. Definitions and Notations .
1. Density Problems for Packings and Coverings
1.1 Basic Questions and Definitions
1.2 The Least Economical Convex Sets for Packing
1.3 The Least Economical Convex Sets for Covering
1.4 How Economical Are the Lattice Arrangements?
1.5 Packing with Semidisks, and the Role of Symmetry
1.6 Packing Equal Circles into Squares, Circles, Spheres
1.7 Packing Equal Circles or Squares in a Strip
1.8 The Densest Packing of Spheres
1.9 The Densest Packings of Specific Convex Bodies
1.10 Linking Packing and Covering Densities
1.11 Sausage Problems and Catastrophes
2. Structural Packing and Covering Problems
2.1 Decomposition of Multiple Packings and Coverings
2.2 Solid and Saturated Packings and Reduced Coverings
2.3 Stable Packings and Coverings
2.4 Kissing and Neighborly Convex Bodies
2.5 Thin Packings with Many Neighbors
2.6 Permeability and Blocking Light Rays
3. Packing and Covering with Homothetic Copies
3.1 Potato Bag Problems
3.2 Covering a Convex Body with Its Homothetic Copies
3.3 Levi-Hadwiger Covering Problem and Illumination
3.4 Covering a Ball by Slabs
3.5 Point Trapping and Impassable Lattice Arrangements
4. Tiling Problems
4.1 Tiling the Plane with Congruent Regions
4.2 Aperiodic Tilings and Tilings with Fivefold Symmetry
4.3 Tiling Space with Polytopes
5. Distance Problems
5.1 The Maximum Number of Unit Distances in the Plane
5.2 The Number of Equal Distances in Other Spaces
5.3 The Minimum Number of Distinct Distances in the Plane
5.4 The Number of Distinct Distances in Other Spaces
5.5 Repeated Distances in Point Sets in General Position
5.6 Repeated Distances in Point Sets in Convex Position
5.7 Frequent Small Distances and Touching Pairs
5.8 Frequent Large Distances
5.9 Chromatic Number of Unit-Distance Graphs
5.10 Further Problems on Repeated Distances ..
5.11 Integral or Rational Distances
6. Problems on Repeated Subconfigurations
6.1 Repeated Simplices and Other Patterns
6.2 Repeated Directions, Angles, Areas
6.3 Euclidean Ramsey Problems
7. Incidence and Arrangement Problems
7.1 The Maximum Number of Incidences
7.2 Sylvester-Gallai-Type Problems
7.3 Line Arrangements Spanned by a Point Set
8. Problems on Points in General Position
8.1 Structure of the Space of Order Types
8.2 Convex Polygons and the Erdos-Szekeres Problem
8.3 Halving Lines and Related Problems
8.4 Extremal Number of Special Subconfigurations
8.5 Other Problems on Points in General Position
9. Graph Drawings and Geometric Graphs
9.1 Graph Drawings
9.2 Drawing Planar Graphs
9.3 The Crossing Number
9.4 Other Crossing Numbers
9.5 From Thrackles to Forbidden Geometric Subgraphs
9.6 Further Turan-Type Problems
9.7 Ramsey-Type Problems
9.8 Geometric Hypergraphs
10. Lattice Point Problems
10.1 Packing'La. ice Points in Suhspaces
10.2 Covering Lattice Points by Subspaces
10.3 Sets of Lattice Points Avoiding Other Regularities
10.4 Visibility Problems for Lattice Points
11. Geometric Inequalities
11.1 Isoperimetric Inequalities for Polygons and Polytopes
11.2 Heilbronn-Type Problems
11.3 Circumscribed and Inscribed Convex Sets
11.4 Universal Covers
11.5 Approximation Problems
12. Index
12.1 Author Index
12.2 Subject Index

正在读取……

这里是其它用户补充的资源(我也要补充):

暂无补充资源
正在加载,请稍等...

点击查看所有13网友评论

 

(?) [公告]留口水、评论相关规则 | [活动]每日签到 轻松领取电驴经验

    小贴士:
  1. 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
  2. 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
  3. 勿催片。请相信驴友们对分享是富有激情的,如果确有更新版本,您一定能搜索到。
  4. 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
  5. 如果您发现自己的评论不见了,请参考以上4条。