v

您的位置:VeryCD图书教育科技

图书资源事务区


《陶伯理论:百年进展》(Tauberian Theory: A Century of Developments )((荷)Jacob Korevaar)扫描版[DJVU]

  • 状态: 精华资源
  • 摘要:
    出版社Springer Berlin Heidelberg
    发行时间2010年
    语言英文
  • 时间: 2010/05/30 08:39:59 发布 | 2010/05/30 09:44:12 更新
  • 分类: 图书  教育科技 

Jean_Pierre

精华资源: 37

全部资源: 37

相关: 分享到新浪微博   转播到腾讯微博   分享到开心网   分享到人人   分享到QQ空间   订阅本资源RSS更新   美味书签  subtitle
该内容尚未提供权利证明,无法提供下载。
中文名陶伯理论:百年进展
原名Tauberian Theory: A Century of Developments
资源格式DJVU
版本扫描版
出版社Springer Berlin Heidelberg
书号3642059198
发行时间2010年
地区美国
语言英文
简介

IPB Image

内容简介:

陶伯理论对级数和积分的可求和性判定的不同方法加以比较,确定它们何时收敛,给出渐近估计和余项估计。由陶伯理论的最初起源开始,作者介绍该理论的发展历程:他的专业评论再现了早期结果所引来的兴奋;论及困难而令人着迷的哈代—李特尔伍德定理及其出人意料的一个简洁证明;高度赞扬维纳基于傅里叶理论的突破,引人入胜的“高指数”定理以及应用于概率论的Karamata正则变分理论。作者也提及盖尔范德对维纳理论的代数处理以及其本人的分布方法。介绍了博雷尔方法和“圆”方法的一个统一的新理论,本书还讨论了研究素数定理的各种陶伯方法。书后附有大量参考文献和详尽的索引。

内容截图:

IPB Image



目录

I The Hardy-Littlewood Theorems .
1 Introduction
2 Examples of Summability Methods. Abelian Theorems and Tauberian Question
3 Simple Applications of Ceshro, Abel and Borel Summability
4 Lambert Summability in Number Theory
5 Tauber's Theorems for Abel Summability
6 Tauberian Theorem for Ceshro Summability
7 Hardy-Littlewood Tauberians for Abel Summability
8 Tauberians Involving Dirichlet Series
9 Tauberians for Borel Summability
10 Lambert Tauberian and Prime Number Theorem
11 Karamata's Method for Power Series
12 Wielandt's Variation on the Method
13 Transition from Series to Integrals
14 Extension of Tauber's Theorems to Laplace-Stieltjes Transforms
15 Hardy-Littlewood Type Theorems Involving Laplace Transforms
16 Other Tauberian Conditions: Slowly Decreasing Functions
17 Asymptotics for Derivatives
18 Integral Tauberians for Ceshro Summability
19 The Method of the Monotone Minorant
20 Boundedness Theorem Involving a General-Kernel Transform
21 Laplace-Stieltjes and Stieltjes Transform
22 General Dirichlet Series
23 The High-Indices Theorem
24 Optimality of Tauberian Conditions
25 Tauberian Theorems of Nonstandard Type
26 Important Properties of the Zeta Function
II Wiener's Theory
1 Introduction
2 Wiener Problem: Pitt's Form
3 Testing Equation for Wiener Kernels
4 Original Wiener Problem
5 Wiener's Theorem With Additions by Pitt
6 Direct Applications of the Testing Equations
7 Fourier Analysis of Wiener Kernels
8 The Principal Wiener Theorems
9 Proof of the Division Theorem
10 Wiener Families of Kernels
11 Distributional Approach to Wiener Theory
12 General Tauberian for Lambert Summability
13 Wiener's 'Second Tauberian Theorem'
14 A Wiener Theorem for Series
15 Extensions
16 Discussion of the Tanberian Conditions
17 Landau-Ingham Asymptotics
18 Ingham Summability
19 Application of Wiener Theory to Harmonic Functions
III Complex Tauberian Theorems
1 Introduction
2 A Landau-Type Tauberian for Dirichlet Series
3 Mellin Transforms
4 The Wiener-Ikehara Theorem
5 Newer Approach to Wiener-Ikehara
6 Newman's Way to the PNT. Work of Ingham
7 Laplace Transforms of Bounded Functions
8 Application to Dirichlet Series and the PNT
9 Laplace Transforms of Functions Bounded From Below
10 Tanberian Conditions Other Than Boundedness
11 An Optimal Constant in Theorem 10.1
12 Fatou and Riesz. General Dirichlet Series
13 Newer Extensions of Fatou-Riesz
14 Pseudofunction Boundary Behavior
15 Applications to Operator Theory
16 Complex Remainder Theory
17 The Remainder in Fatou's Theorem
18 Remainders in Hardy-Littlewood Theorems Involving Power Series
19 A Remainder for the Stieltjes Transform
IV Karamata's Heritage: Regular Variation
1 Introduction
2 Slow and Regular Variation
3 Proof of the Basic Properties
4 Possible Pathology
5 Karamata's Characterization of Regularly. Varying Functions
6 Related Classes of Functions
7 Integral Transforms and Regular Variation: Introduction
8 Karamata's Theorem for Laplace Transforms
9 Stieltjes and Other Transforms
10 The Ratio Theorem
11 Beufiing Slow Variation
12 A Result in Higher-Order Theory
13 Mercerian Theorems
14 Proof of Theorem 13.2
15 Asymptotics Involving Large Laplace Transforms
16 Transforms of Exponential Growth: Logarithmic Theory
17 Strong Asymptotics: General Case
18 Application to Exponential Growth ..
19 Very Large Laplace Transforms
20 Logarithmic Theory for Very Large Transforms
21 Large Transforms: Complex Approach
22 Proof of Proposition 21.4
23 Asymptotics for Partitions
24 Two-Sided Laplace Transforms
V Extensions of the Classical Theory
1 Introduction
2 Preliminaries on Banach Algebras
3 Algebraic Form of Wiener's Theorem
4 Weighted Ll Spaces
5 Gelfand's Theory of Maximal Ideals
6 Application to the Banach Algebra Aw = (Lw, C)
7 Regularity Condition for Lw
8 The Closed Maximal Ideals in Leo
9 Related Questions Involving Weighted Spaces
10 A Boundedness Theorem of Pitt
11 Proof of Theorem 10.2, Part 1
12 Theorem 10.2: Proof that S(y) = (eεy)
13 Theorem 10.2: Proof that S(y) =CO{eφ(y)}
14 Boundedness Through Functional Analysis
15 Limitable Sequences as Elements of an FK-space
16 Perfect Matrix Methods
17 Methods with Sectional Convergence
18 Existence of (Limitable) Bounded Divergent Sequences
19 Bounded Divergent Sequences, Continued
20 Gap Tauberian Theorems
21 The Abel Method
22 Recurrent Events
23 The Theorem of Erd6s, Feller and Pollard
24 Milin's Theorem
25 Some Propositions
26 Proof of Milin's Theorem
VI Borel Summability and General Circle Methods
1 Introduction
2 The Methods B and B'
3 Borel Summability of Power Series
4 The Borel Polygon
5 General Circle Methods Fx
6 Auxiliary Estimates
7 Series with Ostrowski Gaps
8 Boundedness Results
9 Integral Formulas for Limitability
10 Integral Formulas: Case of Positive Sn
11 First Form of the Tauberian Theorem
12 General Tauberian Theorem with Schmidt's Condition
13 Tauberian Theorem: Case of Positive Sn
14 An Application to Number Theory
15 High-Indices Theorems
16 Restricted High-Indices Theorem for General Circle Methods
17 The Borel High-Indices Theorem
18 Discussion of the Tauberian Conditions
19 Growth of Power Series with Square-Root Gaps
20 Euler Summability
21 The Taylor Method and Other Special Circle Methods
22 The Special Methods as Fx-Methods
23 High-Indices Theorems for Special Methods
24 Power Series Methods
25 Proof of Theorem 24.4
VII Tanberian Remainder Theory
1 Introduction
2 Power Series and Laplace Transforms: How the Theory Developed
3 Theorems for Laplace Transforms
4 Proof of Theorems 3. 1 and 3.2
5 One-Sided L1 Approximation
6 Proof of Proposition 5.2
7 Approximation of Smooth Functions
8 Proof of Approximation Theorem 3.4
9 Vanishing Remainders: Theorem 3.3
10 Optimality of the Remainder Estimates
11 Dirichlet Series and High Indices
12 Proof of Theorem 11.2, Continued
13 The Fourier Integral Method: Introduction
14 Fourier Integral Method: A Model Theorem
15 Auxiliary Inequality of Ganelius
16 Proof of the Model Theorem
17 A More General Theorem
18 Application to Stieltjes Transforms
19 Fourier Integral Method: Laplace-Stieltjes Transform
20 Related Results
21 Nonlinear Problems of Erd6s for Sequences
22 Introduction to the Proof of Theorem 21.3
23 Proof of Theorem 21.3, Continued
24 An Example and Some Remarks
25 Introduction to the Proof of Theorem 21.5
26 The Fundamental Relation and a Reduction
27 Proof of Theorem 25.1, Continued
28 The End Game
References
Index

正在读取……

这里是其它用户补充的资源(我也要补充):

暂无补充资源
正在加载,请稍等...

点击查看所有6网友评论

 

(?) [公告]留口水、评论相关规则 | [活动]每日签到 轻松领取电驴经验

    小贴士:
  1. 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
  2. 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
  3. 勿催片。请相信驴友们对分享是富有激情的,如果确有更新版本,您一定能搜索到。
  4. 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
  5. 如果您发现自己的评论不见了,请参考以上4条。