v

您的位置:VeryCD图书教育科技

图书资源事务区


《黎曼几何与几何分析》(Riemannian Geometry and Geometric Analysis)(Jurgen Jost)4th[PDF]

  • 状态: 精华资源
  • 摘要:
    出版社Springer
    发行时间2000年
    语言英文
  • 时间: 2010/04/27 10:35:09 发布 | 2010/04/27 22:14:45 更新
  • 分类: 图书  教育科技 

ljp0403031351

精华资源: 3

全部资源: 3

相关: 分享到新浪微博   转播到腾讯微博   分享到开心网   分享到人人   分享到QQ空间   订阅本资源RSS更新   美味书签  subtitle
该内容尚未提供权利证明,无法提供下载。
中文名黎曼几何与几何分析
原名Riemannian Geometry and Geometric Analysis
别名Universitext
作者Jurgen Jost
资源格式PDF
版本4th
出版社Springer
书号3-540-42627-2
发行时间2000年
语言英文
简介

IPB Image

这本书我在我的另一个资源里发过,现在单独拿出来发一次。初学黎曼几何的读者可以去这里看看:http://www.VeryCD.com/topics/2817268/

这部书是Springer出版社Universitext系列的一本,过后我会整理UT的书发到VC上来。


这是一本关于黎曼几何,尤其是几何分析的优秀教材,但是书中关于纯黎曼几何的讲述很简洁,不太适合初学者,书中很大篇幅在讲几何分析的基本方法,适合对黎曼几何已经有一定了解想从分析方面深入研究的读者。


这是书中部分前言:

Riemannian geometry is characterized, and research is oriented towards and shaped by concepts (geodesics, connections, curvature, ...) and objectives, in particular to understand certain classes of (compact) Riemannian manifolds defined by curvature conditions (constant or positive or negative curvature, ...). By way of contrast, geometric analysis is a perhaps somewhat less systematic collection of techniques, for solving extremal problems naturally arising in geometry and for investigating and characterizing their solutions. It turns out that the two fields complement each other very well; geometric analysis offers tools for solving difficult problems in geometry, and Riemannian geometry stimulates progress in geometric analysis by setting ambitious goals.
  It is the aim of this book to be a systematic and comprehensive introduction to Riemannian geometry and a representative introduction to the methods of geometric analysis. It attempts a synthesis of geometric and analytic methods in the study of Riemannian manifolds.

IPB Image



目录

1. Foundational Material
1.1 Manifolds and Differentiable Manifolds
1.2 Tangent Spaces
1.3 Submanifolds
1.4 Riemannian Metrics
1.5 Vector Bundles
1.6 Integral Curves of Vector Fields. Lie Algebras
1.7 Lie Groups
1.8 Spin Structures
Exercises for Chapter 1
2. De Rham Cohomology and Harmonic Differential Forms
2.1 The Laplace Operator
2.2 Representing Co homology Classes by Harmonic Forms
2.3 Generalizations
Exercises for Chapter 2
3. Parallel Transport, Connections, and Covariant Derivatives
3.1 Connections in Vector Bundles
3.2 Metric Connections. The Yang-Mills Functional
3.3 The Levi-Civita Connection
3.4 Connections for Spin Structures and the Dirac Operator ..
3.5 The Bochner Method
3.6 The Geometry of Submanifolds. Minimal Submanifolds ...
Exercises for Chapter 3
4. Geodesics and Jacobi Fields
4.1 1st and 2nd Variation of Arc Length and Energy
4.2 Jacobi Fields
4.3 Conjugate Points and Distance Minimizing Geodesics ...
4.4 Riemannian Manifolds of Constant Curvature
4.5 The Rauch Comparison Theorems and Other Jacobi Field Estimates
4.6 Geometric Applications of Jacobi Field Estimates
4.7 Approximate Fundamental Solutions and Representation Formulae
4.8 The Geometry of Manifolds of Nonpositive Sectional Curvature
Exercises for Chapter 4
A Short Survey on Curvature and Topology
5. Symmetric Spaces and Kahler Manifolds
5.1 Complex Projective Space
5.2 Kahler Manifolds
5.3 The Geometry of Symmetric Spaces
5.4 Some Results about the Structure of Symmetric Spaces ..
5.5 The Space SI(n,R)/SO(n,R)
5.6 Symmetric Spaces of Noncompact Type as Examples of Nonpositively Curved Riemannian Manifolds
Exercises for Chapter 5
6. Morse Theory and Floer Homology
6.1 Preliminaries: Aims of Morse Theory
6.2 Compactness: The Palais-Smale Condition and the Existence of Saddle Points
6.3 Local Analysis: Nondegeneracy of Critical Points, Morse Lemma, Stable and Unstable Manifolds
6.4 Limits of Trajectories of the Gradient Flow
6.5 The Morse-Smale-Floer Condition: Transversality and Z2-Cohomology
6.6 Orientations and Z-homology
6.7 Homotopies
6.8 Graph flows
6.9 Orientations
6.10 The Morse Inequalities
6.11 The Palais-Smale Condition and the Existence of Closed Geodesics
Exercises for Chapter 6
7. Variational Problems from Quantum Field Theory ..
7.1 The Ginzburg-Landau Functional
7.2 The Seiberg-Witten Functional
Exercises for Chapter 7
8. Harmonic Maps
Appendix
Bibliography
Index

正在读取……

这里是其它用户补充的资源(我也要补充):

暂无补充资源
正在加载,请稍等...

点击查看所有12网友评论

 

(?) [公告]留口水、评论相关规则 | [活动]每日签到 轻松领取电驴经验

    小贴士:
  1. 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
  2. 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
  3. 勿催片。请相信驴友们对分享是富有激情的,如果确有更新版本,您一定能搜索到。
  4. 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
  5. 如果您发现自己的评论不见了,请参考以上4条。